Skip to content

Mathematik verstehen am Beispiel einer Defintion

Kürzlich ging eine Erschütterung durch die Welt der Kryptografie. Das Paper Quantum Algorithms for Lattice Problems versprach einen neuen Angriff gegen bestimmte Algorithmen. Diese heißen Learning-With-Errors (LWE) und bilden eine Grundlage für Algorithmen, die gegen Quantencomputer sicher sein sollen. Hier spielt eine Menge Mathematik mit hinein. Als Beispiel seht ihr eine halbe Seite aus dem Paper:

Seite 22 des Papers
Seite 22 des Papers

Das Thema klang hinreichend interessant und ich wollte mich ein wenig einlesen. Zum konkreten Paper muss man sagen, dass mittlerweile ein Fehler im Algorithmus gefunden wurde und die Autoren schreiben:

Now the claim of showing a polynomial time quantum algorithm for solving LWE with polynomial modulus-noise ratios does not hold.

Beim Lesen fiel mir wieder etwas auf, was mir schon früher auffiel. Es gibt Sätze, die kommen recht unschuldig daher und klingen leicht verständlich. Dennoch steckt soviel Theorie dahinter, dass es eine Weile dauern könnte, um diese zu durchdringen.

Gleich in der Einführung findet sich ein Beispiel: An n-dimensional lattice L is a discrete additive subgroup of ℝn. (Ein n-dimensionales Gitter L ist eine diskrete additive Untergruppe von ℝn.)

Welche Begriffe muss man verstehen oder interpretieren können, um die Definition zu verstehen?

  1. n-dimensional
  2. diskrete additive Untergruppe
  3. n

Das heißt, nahezu jedes Wort ist erklärungsbedürftig und mit Schulwissen kaum zu durchdringen. Wenn wir jetzt die Wikipedia konsultieren, kommen wir ein Stück weiter. Dort findet sich auch eine Definition des Gitters als diskrete Untergruppe eines euklidischen Raums sowie einige Beispiele. Wenn wir beide Definitionen vergleichen, steht in dem Paper zusätzlich das Wort additiv und anstatt euklidischer Raum wird von ℝn gesprochen. Aus der Wikipedia-Seite zum euklidischen Raum wird schnell klar, dass ℝn ein euklidischer Raum ist. Also sind beide Definitionen ähnlich. Das heißt, mit kleinen Einschränkungen können wir mit der Wikipedia-Definition weiterarbeiten.

Um den Satz nun zu verstehen, sollten wir uns dem zweiten Begriff, der diskreten additiven Untergruppe, zuwenden. Beim Aufdröseln ergeben sich neue Begriffe, die man entweder kennen oder lernen muss.

  • Untergruppe
    • Eine Untergruppe hat eine Verknüpfung (Addition, Multiplikation etc.) und bildet eine Gruppe.
      • Eine Gruppe ist eine Menge mit einer Verknüpfung (Addition, Multiplikation etc.). Bei der Verknüpfung ist es egal, wie man Klammern setzt (Assoziativgesetz), es gibt ein so genanntes neutrales Element und ein inverses Element. Wenn man ein neutrales Element verknüpft, ändert sich nichts, so wie bei einer Addition mit 0. Wenn man ein Element der Menge mit dessem inversen Element verknüpft, erhält man das neutrale Element (12-12=0 bei der Addition, -12 ist das inverse Element).
  • Additive Untergruppe
    • Das ist eine Untergruppe, wo die Verknüpfung Addition heißt.
  • Diskrete Untergruppe
    • Eigentlich geht es hier um diskrete Teilmengen eines Raumes mit der zusätzlichen Eigenschaft, dass diese Teilmenge eine Untergruppe bildet.
    • Eine Teilmenge ist, wie der Name schon sagt, ein Teil der Menge.
    • Diskret bedeutet nun, dass jedes Element der Menge eine Umgebung hat, dass kein weiteres Element der Teilmenge enthält. Das heißt, die einzelnen Elemente der Menge sind isolierte Punkte.
    • Die ganzen Zahlen …, -2, -1, 0, 1, 2, … sind als Teilmenge der reellen Zahlen eine solche Menge. Denn bei jeder Zahl gibt es nach links und rechts einen Abstand, wo sich keine andere Zahl drin findet. Bei den Brüchen (rationale Zahlen) ist das anders. Dort finden sich keine zwei Zahlen mit einem kleinen Abstand, dass keine andere rationale drin läge. Daher ist das keine diskrete Teilmenge.
  • n
    • n ist der n-dimensionale Raum der reellen Zahlen. Aus der Schule kennt man ℝ1 (Zahlenstrahl), ℝ2 (Zahlenebene) und ℝ3 (dreidimensionaler Raum).

Damit haben wir alle Bauteile zusammen, um den obigen Satz zu verstehen. Wobei ich zugeben, muss, dass ich oben einige Abkürzungen genommen habe und auf intuitives Verständnis gesetzt habe. Dennoch reicht das in der Mathematik oftmals nicht. Es ist sinnvoll, sich Beispiele auszudenken. Diese sollten sowohl den positiven Fall abdecken (erfüllt die Definition), aber auch den negativen Fall (erfüllt die Definition nicht). Das sorgt dann wirklich für ein Verständnis des Ganzen.

Das war es auch, was ich am Anfang meinte, als ich von dem kleinen unschuldig klingenden Satz schrieb. Um den zu verstehen, muss man entweder tief im irgendwann mal Erlernten graben oder neues lernen und es dauert eine längere Zeit, bis man ein Paper einmal durchgearbeitet hat. Noch viel länger dauert es, bis man es verstanden hat. :-)

Der obige Satz war der Einstieg in das Paper und nur die Einleitung. Später geht es um gaussche Funktionen und Fouriertransformationen. Das sind Konzepte über die es semesterlange Vorlesungen gibt. Das heißt, um das zu verstehen, kann man wirklich aus den Tiefen der Mathematik schöpfen. Ich wünsche euch viel Spaß bei der Lektüre. :-)

Mit dem Paper haben sich einige andere auseinandergesetzt. Hier findet ihr interessante Lektüre dazu:

Warum kannte die Polizei die Terroristen und fing sie nicht?

Die Nachrichten über die schlimmen Terroranschläge in Brüssel ziehen am Nachrichtenticker vorbei und schon beginnen wieder die üblichen Diskussionen. Die Innenpolitiker fordern mehr Überwachung, andere machen die Flüchtlinge oder Angela Merkel verantwortlich, wieder andere weisen darauf hin, dass Flüchtlinge gerade vor dem Terror geflohen sind etc. Es tauchen auch, wie bei anderen Anschlägen, Meldungen auf, dass die Kriminellen schon vorab den Behörden bekannt waren und es wird die Frage gestellt, warum nichts gemacht wurde. Einer der Gründe ist die Mathematik, die gegen die Behörden spielt. Warum ist das so?

Zu Anfang treffe ich ein paar Annahmen: Ich verwende Belgien als Beispiel. Das Land hat ca. 11 Millionen Einwohner. Weiterhin bräuchte ich eine Zahl potenzieller Terroristen. Jetzt nehme ich mal an, es gäbe nur islamistischen Terrorismus. In Deutschland meldet das Bundesamt für Verfassungsschutz ein islamistisches Personenpotenzial von knapp 44.000 Menschen. Angenommen die Zahl lässt sich 1:1 auf Belgien übertragen, so leben dort gerundet 5.500 Menschen mit einem islamistischen Personenpotenzial. Das Ziel der Behörden ist nun, diese Personen zuverlässig zu filtern und ggf. zu beobachten.

Dazu werden Überwachungs-, Datenauswerte- und Kontrollmaßnahmen installiert. Das System ist so leistungsfähig, dass es 99,9% aller Terroristen erkennt. Also nur in einem Tausendstel der Fälle wird ein Terrorist nicht als solcher erkannt. Aber es erkennt auch Normalbürger in einem Prozent der Fälle fälschlicherweise als Terroristen.

Das System ist in Betrieb und bringt einen Alarm, dass es einen Terroristen erkannt hat. Aber ist dies wirklich einer und wie hoch ist die Wahrscheinlichkeit? Geht mal in euch und versucht, eine Schätzung abzugeben.

Um die Frage zu beantworten, stellen wir uns vor, dass System würde ganz Belgien durchleuchten. Es würden also 5.495 Terroristen erkannt werden. Daneben erkennt das System auch 110.000 Einwohner als Terroristen, die keine sind. Das heißt, insgesamt wird 115.495 Mal Alarm geschlagen. Aber der Alarm war nur in 4,7 % der Fälle korrekt. Das heißt, das System schlägt in mehr als 95 % der Fälle falschen Alarm.

Das heißt, dass zwar viele Personen und besonders viele Terroristen von so einem System erkannt würden. Dennoch sind auch hier die Mehrzahl unbescholtene Bürger und die Strafverfolger haben die Arbeit, korrekt zu filtern. Diese Arbeit sieht im Nachhinein sehr einfach aus. Aber üblicherweise fehlen bei der Suche vor einem Anschlag viele konkrete Hinweise. Letztlich müssen wir akzeptieren, dass es perfekte Sicherheit nicht herstellbar ist. Ich bin der Meinung, dass nicht mehr Überwachung, Datenaustausch und Repression die Lösung ist, sondern die Politik (»wir«) sollte sich Gedanken machen, wo die Gründe liegen und diese beseitigen.

Spamschutz bei S9Y

Im Hintergrund tut Serendipity oder kurz S9Y seinen Dienst. Vor mehr als sieben Jahren stieg ich von Wordpress auf die Software um. Die Software tut im wesentlichen ihren Dienst. Außer, wenn wie heute, ein Plugin merkwürdige Sachen macht.

Ich hatte bis heute abend das Autosave-Plugin installiert. Das speichert die Einträge zwischen und soll eigentlich vor Datenverlust schützen. Bei mir sorgte es dafür, dass die Rezension mehrfach verschwand. Der Grund war, dass ich auf Speichern im Artikelfenster drückte und das Fenster offen liess. Das Plugin wollte einfach alte Werte speichern und löschte so den Beitrag.

Seit dem Jahreswechsel bereitet mir nicht die Blogsoftware Kopfschmerzen, sondern der Spam der eintrudelt. Anfangs hatte ich den Spamschutz aktiviert, den S9Y von Haus aus mitbringt. Dazu setzte ich ein paar Worte auf die Blacklist. Das reichte aus. Nebenan im Datenkanal habe ich noch das Bayes-Plugin im Einsatz. Das wurde von Beginn an angelernt und verrichtet gute Dienste.

Das S9Y Infocamp hat sich nun dem Thema Spamschutz bei S9Y angenommen. In dem Podcast besprechen sie verschiedene Mechanismen. Dabei kommt die Rede auf die SpamBee. Die arbeitet unter anderem mit versteckten CAPTCHAs. Die vier Podcaster sind voll das Lobes. Ich habe den Podcast glücklicherweise zur rechten Zeit gehört. Denn direkt nachdem ich die Biene hier installierte, traf das Blog eine Spamwelle. Von den Lesern hat das vermutlich niemand bemerkt. Die Spambiene hat den Spam wirklich sehr gut abgefangen. Wer also da draußen mit Spam bei S9Y zu kämpfen hat, sollte unbedingt SpamBee probieren. Vermutlich bringt das Plugin Linderung.

Firefox Add-On Ant Video Downloader spioniert Nutzer aus

Ein Add-On für den Firefox, welches 4 von 5 Sternen hat und von mehr als sieben Millionen Nutzer installiert wurde, sollte doch halbwegs vertrauenswürdig sein. Zumindest legt Linus’ Law diese Erkenntnis nahe. Das Add-On Ant Video Downloader straft diese Annahme nun Lügen.

Der Ant Video Downloader soll Videos von Youtube, Facebook und vielen anderen Seiten auf einfache Weise herunterladen. Daneben hat die Software noch einen anderen Zweck. Sie sammelt Daten über jede Seite, die der Benutzer besucht. Dazu wird eine eindeutige Nummer, die so genannte Ant-UID, angelegt. Wenn eine Webseite aufgerufen wird, sendet Ant eine zweite Anfrage mit eben dieser Nummer, der URL der aufgerufenen Seite sowie der Browserkennung an die Adresse rpc.ant.com.  Somit kommt dort jeder Seitenaufruf (also auch interne URLs im privaten Netzwerk) an, den ihr jemals gemacht habt. Damit aber noch nicht genug. Bei der Deinstallation der Software wird die Informationen mit der eindeutigen Nummer, der Ant-UID, behalten. Wenn ihr die Software später neu installiert, wird genau dieselbe Nummer wieder verwendet. Das ist also eine massive Verletzung der Privatsphäre der Nutzer.

Wie ein Witz klingt da die Privacy Policy von Ant.com:

As a responsible member of the community of website owners, Ant.com solutions (Here in after Ant.com) takes the privacy and security of its users with the highest regard.

Insgesamt finde ich in der Policy keinen Hinweis auf diese Spionagemaßnahme. Glücklicherweise haben die Betreiber der Add-On-Seite die Notbremse gezogen. Zunächst wurde der Download der Software komplett deaktiviert und jetzt ist diese als experimentell gekennzeichnet. Damit sollten nur erfahrenere Nutzer diese installieren können.

Das Beispiel zeigt mal wieder, das man sich offensichtlich auf keine Software verlassen kann und insbesondere das die Warnungen bezüglich der Add-Ons sehr ernst zu nehmen sind.

via InterWeb Task Force und The Register

Primzahl oder nicht

Von Primzahlen geht für viele eine große Faszination aus das Thema wird aus verschiedenen Richtungen gern beleuchtet. Sehr alt ist dabei die Fragestellung, wie viele Primzahlen es denn gibt. Euklid fand neben anderen die Antwort auf diese Frage: Es gibt unendlich viele Primzahlen. Sein Beweis ist recht einleuchtend.

Stellen wir uns vor, es gäbe nur endlich fünf Primzahlen (In der Regel sagt man: endlich viele) p1, p2, p3, p4 und p5. Dann berechnet man eine neue Zahl z = p1*p2*p3*p4*p5+1, d.h. alle Primzahlen werden multipliziert und anschließend wird die Zahl 1 addiert. Keine der bisherigen Primzahlen teilt diese Zahl z. Da aber jede natürliche Zahl einen Primteiler besitzt, muss der außerhalb der bisher bekannten Primzahlen liegen, d.h. es gibt mindestens eine neue Primzahl p6. Die Aussage lässt sich dann wieder anwenden und so ergibt sich, dass die Zahl der Primzahlen nicht endlich sein kann.

Bei Mathoverflow wurden diverse Fehleinschätzungen diskutiert. Unter anderem zählte dazu, dass die oben konstruierte Zahl z eine Primzahl sei. Wenn man den Beweis oberflächlich liest (siehe auch die Skripte zu Algebra 1 oder Zahlentheorie), könnte man in der Tat zu dem Schluss kommen. Die Zahlen 2, 3, 5, 7, 11 und 13 liefern jedoch ein Gegenbeispiel.

Schlimm finde ich dann die in dem Posting angegebenen Beispiele von Leerern (sic!), die ihre Schülern unter Beschimpfungen vor die Tür stellen, weil sie auf den obigen Umstand hinweisen und den auch noch beweisen.

cronjob